RoboClean: Human Robot Collaboration for Allergen-Aware Factory Cleaning

Human-Robot collaboration is expected to increase in the following years [Elprama, 2017]. The RoboClean project will investigate the potential of human-robot collaboration, integrated with IoT sensors for cleaning and allergen detection on a factory floor. We will be exploring, the impact of introducing a robot that can teamwork “hand to hand”, or better said  “hand to robo-hand” with a factory worker – focusing on assisting them rather than replacing their role.

RoboClean targets the food industry – supporting the cleaning and safety process in an industry where the presence of an allergen is a safety risk, and also given the relevance of this sectors annual contribution of £28 billion to the economy.

Early stages of the project involved a visit to a bread factory in Birmingham to learn about current work practices in food factory cleaning, and gain a better understand the social context of food factories. In addition, we built and evaluated a “Human-Robot Collaborative-Hub” – effectively the “brain”, combining a voice interface and a robot cleaner. This “hub” will store data on robot activity, to identify zones to be cleaned through voice interface control.  This activity enabled us to identify what functions and procedures (API) were required to control the robot.

The next stage of the project will involve designing and developing the architecture of the “Human-Robot Collaborative-Hub” as a bridge between cleaner robots’ and different user interfaces – to explore controlling robot interaction in different areas through voice interfaces, for example:  “Robot, clean around the round table” or “Robot, clean around the fridge”. We are also working on integrating a sensor capable to detect allergens, with the aim of directing the robot cleaner to specific locations using data from the “HR-Collaborative-Hub”.

Introducing our Demonstrator projects

We have adopted three demonstrator projects to kick of the Campaign.

Project are part funded by the University of Nottingham Smart Products Beacon of Excellence

RoboClean: Human Robot Collaboration for Allergen-Aware Factory Cleaning 

In food and drink manufacturing, a third of working time is spent cleaning, which significantly affects productivity and efficiency.  This project aims to understand and address the industry need for cleaning support technologies by developing and deploying human robot collaboration to assist in the cleaning of factories and detect the unwanted presence of allergens to prevent food safety events. 

 Food Design for Future Dining (FD)2

Traditionally “food design” has been an area of expertise for Chefs, where raw materials are combined and cooked or processed, resulting in the blending of multiple components to create a “dish”.  However, the food engineering involved in current culinary processes resembles processes taking place at universities, with extensive testing of exotic ingredients requiring  control  and  high levels of  precision. Food is also a highly regulated commodity where, in order to bring a food to market, regulatory requirements must be met and businesses must be able to support any claims made by reference to evidence.  This project will address a number of questions through creative technologies and  engineering research – designing and demonstrating prototypical digital foods that provide novel physical and digital eating experiences. 

Industrial Co-bots Understanding Behaviour (I-CUBE) 

Collaborative robots, or co-bots, are robots that work collaboratively with humans in a productivity- enhancing process – most often associated with manufacturing and/or healthcare domains. Despite the aim to collaborate, co-bots lack the ability to sense humans and their behaviour appropriately. Instead robots rely on physically mechanical, hierarchical, instructions given explicitly by the human instead of utilizing a more natural means to include pose, expression, and language, and utilize this to determine behaviour. In turn, humans do not understand how the robot makes its decisions.  This project will enable research in human-robot corporation and bring together the ‘know-how’ and ‘research interests’ of human factors work, automatic human behaviour analysis and machine learning. Based on a laundry sorting co-bot task, the project will investigate how humans and robots explain their tasks, cope with mistakes and guide each other to overcome (impending) failure.